RSS

Category Archives: Porsche 918 Spyder Concept

VIDEO: Travel in style in the Porsche 918 Spyder Luggage Set

 

A new luggage series for a super sports car, created by the Porsche Design Studio

918 Spyder luggage set

918 Spyder luggage set

Stuttgart. The new Porsche 918 Spyder luggage set presented by Porsche Tequipment is the first suitcase and bag series specially designed for trips away in this high-performance Sports Car. Designed by the Porsche Design Studio and developed by Porsche in Weissach, the luggage collection is an ideal match for the interior of the super sports car. The material concept of these luxurious accessories is based on those used in the passenger compartment of the 918 Spyder*, and the set is also designed to make optimum use of the space available in the vehicle.

The series is available in three versions: as a five-piece luggage set, a three-piece travel set or a two-piece stowage set. The entire set comprises two storage boxes, two garment covers and a trolley.

The trolley was specially designed to fit the luggage compartment of the 918 Spyder and has a capacity of 30 litres. Its unusual form means that it leaves more than enough space in the luggage compartment to stow the removable roof halves of the 918 Spyder as well. The trolley can be expanded to hold an additional 10 litres if necessary.

A carbon case for the centre console is also included in the collection. The box opens on the passenger’s side and fits into the elevated centre console, providing stowage space of around 4 litres.

An additional small storage box utilises the space in the glove box for secure stowage. The fact that it is opened and closed using the flap of the glove compartment means that it is ideally integrated into the vehicle.
The luggage set is rounded off by two garment covers which can be securely attached to the carbon-fibre monocoque behind the seats thanks to a specially designed hanging system. The magnetic clasps on the inside of the garment protectors make it easier to fold them together. The protective covers are also shaped to fit the available space, unlike conventional garment covers.

The 918 Spyder luggage series is “Handmade in Germany“. The pieces of luggage are made from a unique high-quality combination of exposed carbon and authentic natural leather. The insides of the boxes, the garment covers and the suitcase are lined with Alcantara. The set thus references the popular motor sports materials which are also used in the interior of the 918 Spyder. The luggage set is available in the same versions as the vehicle interior: Garnet Red-Silver, Onyx Black-Acid Green, Onyx Black-Silver, Mocca Brown-Silver and Mocca Brown-Orange.

Wherever you are in the world, the “Tequipment Accessories Finder” at http://www.porsche.com/tequipment can be used to search online for information about products from Porsche Tequipment. The online portal’s search function provides a quick and easy overview of the Porsche accessories range.

*Porsche 918 Spyder: combined fuel consumption: 3.1 – 3.0 l/100 km; combined energy consumption: 12.7 kWh/100 km; CO2 emissions: 72 – 70 g/km

Source: Product and Technology Communication

Advertisements
 

Tags: , , , , , , , , ,

Porsche 918 Spyder A unique combination of performance and efficiency

 

Prototyp 918 Spyder

Stuttgart. The 918 Spyder embodies the essence of the Porsche idea: it combines pedigree motor racing technology with excellent everyday utility, and maximum performance with minimum consumption. The task faced by the development team was to create the super sports car for the next decade with a highly efficient and powerful hybrid drive. Developing the car from scratch, appropriately beginning with a sheet of white paper, allowed the team to come up with a no-compromise concept. The entire car was designed around the hybrid drive. The 918 Spyder therefore demonstrates the potential of the hybrid drive to a degree never seen before: the parallel improvement of both efficiency and performance without one being at the cost of the other. This is the idea that has made the Porsche 911 the most successful sports car in the world for 50 years. In short, the 918 Spyder will act as the gene pool for the Porsche sports cars of the future.
Prototyp 918 Spyder
The 918 Spyder reveals its close links to motorsport in a variety of ways. It has been designed, developed and produced by Porsche engineers who build race cars, in cooperation with series production specialists. A great deal of insight gained from the development of Porsche race cars for the 24 hours race in Le Mans in 2014 is thus integrated into the 918 Spyder – and vice versa. The structural concept of the 918 Spyder with a rolling chassis as its basis – a basic vehicle that can be driven even without a body – is race car tradition at Porsche. The concept of the V8 engine originates from the LMP2 RS Spyder race car. The load-bearing structures, the monocoque and subframe, are made of carbon fibre reinforced polymer. Porsche has many years of experience with this high-strength, lightweight construction material and has again achieved top results with the development of the series production 918 Spyder. Many parts of the super sports car come from manufacturers who have a proven record as suppliers for motorsport vehicles.
Prototyp 918 Spyder
Hybrid drive brings advantages in terms of driving dynamics 
A key message of the 918 Spyder is that the hybrid drive from Porsche is a plus for no-compromise driving dynamics. Drivers can experience this thanks to the unique all-wheel drive concept with a combination of combustion engine and electric motor on the rear axle and the second electric motor on the front axle. It is based on knowledge gained by Porsche during motor races with the successful 911 GT3 R Hybrid. Due to the additional, individually controllable front drive, new driving strategies for extremely high, safe cornering speeds can be implemented, especially for bends. Furthermore, the advanced “boost” strategy manages the energy of the electric drive so intelligently that, for every sprint with maximum acceleration, the full power of the 918 Spyder can be tapped into by simply pressing the accelerator down fully. In short, the 918 Spyder allows even drivers without motorsport training to experience the potential of advanced longitudinal and transverse dynamics.
Prototyp 918 Spyder
The Porsche 918 Spyder also has the potential to break many records. The current lap time for the North Loop of the Nürburgring is 7:14 minutes. This time was achieved in the presence of international journalists during test drives in September 2012 – more than a year before start of production. The 918 Spyder prototype was therefore approximately 20 seconds quicker than the Porsche Carrera GT. More test drives on the Nürburgring North Loop will follow. An even more important factor is that the 918 Spyder surpasses previous models and competitors by far in its efficiency as well. As a plug-in hybrid vehicle, it systematically combines the dynamic performance of a racing machine with over 880 hp and low NEDC fuel consumption, which at about three litres fuel per 100 km is better than that of most small cars today. To sum it up: maximum driving fun with minimal fuel consumption.
Prototyp 918 Spyder
Carbon monocoque guarantees lightweight design with a low centre of gravity 
The 918 Spyder utilizes the best state-of-the-art technologies, taken straight from motor racing, to achieve its top performance. The entire load-bearing structure is made of carbon fibre reinforced polymer (CFRP) for extreme torsional rigidity. Additional crash elements at the front and rear absorb and reduce the energy of a collision. The car’s unladen weight of approximately 1,640 kg (“Weissach” package), an excellent low weight for a hybrid vehicle of this performance class, is largely attributable to this concept. The drivetrain components and all components weighing over 50 kg are located as low and as centrally as possible within the vehicle. This results in a slightly rear end biased axle load distribution of 57 per cent on the rear axle and 43 per cent on the front axle, combined with an extremely low centre of gravity at approximately the height of the wheel hubs, which is ideal for driving dynamics. The central and low position of the traction battery directly behind the driver not only supports efforts to concentrate masses and lower the centre of gravity; it also provides the best temperature conditions for optimum battery power capacity.
Prototyp 918 Spyder
Chassis with race car genes and rear-axle steering 
The multi-link chassis of the Porsche 918 Spyder is inspired by motorsport design, complemented by additional systems such as the PASM adaptive shock-absorber system and rear-axle steering. Basically, this incorporates an electro-mechanical adjustment system at each rear wheel. The adjustment is speed-sensitive and executes steering angles of up to three degrees in each direction. The rear axle can therefore be steered in the same direction as the front wheels or in opposition to them. At low speeds, the system steers the rear wheels in a direction opposite to that of the front wheels. This makes cornering even more direct, faster and more precise, and it reduces the turning circle. At higher speeds, the system steers the rear wheels in the same direction as the front wheels. This significantly improves the stability of the rear end when changing lanes quickly. The result is very secure and stable handling.

Porsche Active Aerodynamic (PAA) for different driving modes 
Porsche Active Aerodynamic (PAA), a system of adjustable aerodynamic elements, ensures unique and variable aerodynamics; its layout is automatically varied over three modes ranging from optimal efficiency to maximum downforce and is tuned to the operating modes of the hybrid drive system. In “Race” mode, the retractable rear wing is set to a steep angle to generate high downforce at the rear axle. The spoiler positioned between the two wing supports near the trailing edge of the airflow also extends. In addition, two adjustable air flaps are opened in the underfloor in front of the front axle, and they direct a portion of the air into the diffuser channels of the underbody structure. This also produces a “ground effect” at the front axle.
Prototyp 918 Spyder
In “Sport” mode, the aerodynamic control system reduces the attack angle of the rear wing somewhat, which enables a higher top speed. The spoiler remains extended. The aerodynamic flaps in the underfloor area close, which also reduces aerodynamic drag and increases attainable vehicle speeds. In “E” mode, the control is configured entirely for low aerodynamic drag; the rear wing and spoiler are retracted and the underfloor flaps are closed.

Adjustable air inlets under the main headlights round off the adaptive aerodynamic system. When the vehicle is stationary and in “Race” and “Sport” mode, they are opened for maximum cooling air intake. In “E-Power” and “Hybrid” modes, they close immediately after the car is driven off in order to keep aerodynamic drag to a minimum. They are not opened until the car reaches speeds of approximately 130 km/h or when cooling requirements are higher.

From comfortable to race-ready: five modes for three motors 
The core of the 918 Spyder concept is its distribution of propulsive power among the three power units; their cooperation is controlled by an intelligent management system. To best exploit these different approaches, the Porsche developers defined five operating modes that can be activated via a “map switch” on the steering wheel, just like in motorsport cars. On the basis of this pre-selection, the 918 Spyder applies the most suitable operating and boost strategy without driver intervention, thus allowing the driver to concentrate fully on the road.

Quiet and elegant: “E-Power” 
When the vehicle is started up, the “E-Power” mode is the default operating mode as long as the battery is sufficiently charged. In ideal conditions, the 918 Spyder can cover over 30 kilometres on purely electric power. Even in pure electric mode, the 918 Spyder accelerates from 0 to 100 km/h in less than seven seconds and can reach speeds of up to 150 km/h. In this mode, the combustion engine is only used when needed. If the battery’s charge state drops below a set minimum value, the vehicle automatically switches to hybrid mode.

Efficient and comfortable: “Hybrid” 
In “Hybrid” mode, the electric motors and combustion engine work alternately with a focus on maximum efficiency and minimum fuel consumption. The use of individual drive components is modified as a function of the current driving situation and the desired performance. The Hybrid mode is typically used for a fuel economy-oriented driving style.

Sporty and dynamic: “Sport Hybrid”
In more dynamic situations, the 918 Spyder selects the “Sport Hybrid” mode for its power sources. The combustion engine now operates continuously and provides the main propulsive force. In addition, the electric motors provide support in the form of electric boosting or when the operating point of the combustion engine can be optimised for greater efficiency. The focus of this mode is on performance and a sporty driving style at top speed.

For fast laps: “Race Hybrid”
“Race Hybrid” is the mode for maximum performance and an especially sporty driving style. The combustion engine is chiefly used under high load, and charges the battery when the driver is not utilising its maximum output. Again, the electric motors provide additional support in the form of boosting. Furthermore, the gear-shifting programme of the PDK is set up for even sportier driving. The electric motors are used up to the maximum power output limit to deliver the best possible performance for the race track. In this mode, the battery charge state is not kept constant, rather it fluctuates over the entire charge range. In contrast to Sport Hybrid mode, the electric motors run at their maximum power output limit for a short time for better boosting. This increased output is balanced by the combustion engine charging the battery more intensively. Electric power is thus available even with several very fast laps.

For pole position: “Hot Lap”
The “Hot Lap” button in the middle of the map switch releases the final reserves of the 918 Spyder and can only be activated in “Race Hybrid” mode. Similar to a qualification mode, this pushes the traction battery to its maximum power output limits for a few fast laps. This mode uses all of the available energy in the battery.

Main propulsion: the race car’s eight cylinder engine 
The main source of propulsion is the 4.6-litre, eight cylinder engine that produces 608 hp of power. The engine is derived directly from the power unit of the successful RS Spyder, which explains why it can deliver engine speeds of up to 9,150 rpm. Like the race engine of the RS Spyder, the 918 Spyder power unit features dry-sump lubrication with a separate oil tank and oil extraction. To save weight, components such as the oil tank, the air filter box integrated into the subframe and the air induction are made of carbon fibre reinforced polymer. Further extensive lightweight design measures have resulted in such features as titanium connecting rods, thin-wall, low-pressure casting on the crank case and the cylinder heads, a high-strength, lightweight steel crankshaft with 180 degrees crankpin offset and the extremely thin-walled alloy steel/nickel exhaust system. Striking features of the V8 are that it no longer supports any auxiliary systems, there are no external belt drives and the engine is therefore particularly compact. Weight and performance optimisations achieve a power output per litre of approx. 132 hp/l – the highest power output per litre of a Porsche naturally aspirated engine – which is significantly higher than that of the Carrera GT (106 hp/l) and outstanding for a naturally aspirated engine.

Unique race car design heritage: top pipes 
It isn’t just this engine’s performance but also the sound it makes that stokes the emotionality of the 918 Spyder. This is attributable first and foremost to the so-called top pipes: the tailpipes terminate in the upper part of the rear end immediately above the engine. No other production vehicle uses this solution. The top pipes’ greatest benefit is optimal heat removal, because the hot exhaust gases are released via the shortest possible route, and exhaust gas back pressure remains low. This design requires a new thermodynamic air channelling concept. With the HSI engine, the hot side is located inside the cylinder V, the intake channels are on the outside. There is another benefit as well: the engine compartment remains cooler. This is especially beneficial to the lithium-ion traction battery, as it provides optimum performance at temperatures between 20 and 40 degrees Celsius. Consequently, less energy needs to be used for active cooling of the battery.

In parallel in the drivetrain: hybrid module 
The V8 engine is coupled to the hybrid module, since the 918 Spyder is designed as a parallel hybrid like the current hybrid models from Porsche. Essentially, the hybrid module comprises a 115 kW electric motor and a decoupler that serves as the connection with the combustion engine. Because of its parallel hybrid configuration, the 918 Spyder can be powered at the rear axle either individually by the combustion engine or electric motor or via both drives jointly. As is typical for a Porsche super sports car, the power pack in the 918 Spyder has been placed in front of the rear axle, and does not have any direct mechanical connection to the front axle.

Upside-down for a low centre of gravity: Doppelkupplung 
A seven-speed Doppelkupplung (PDK) transmission handles power transmission to the rear axle. The high-performance transmission is the sportiest version of the successful PDK; it has undergone a complete redesign for the 918 Spyder and has been further optimised for high performance. To ensure a low mounting position for a low centre of gravity of the entire vehicle, the gear unit was turned “upside down” by rotating it 180 degrees about its longitudinal axis, in contrast to other Porsche series. If no power is required on the rear axle, the two motors can be decoupled by opening the decoupler and PDK clutches. This is the action behind the Porsche hybrid drive’s typical “coasting” with the combustion engine switched off.

Independent all-wheel drive: front axle with electric motor 
On the front axle, there is another independent electric motor with an output of approximately 95 kW. The front electric drive unit drives the wheels at a fixed ratio. A decoupler decouples the electric motor at high speeds to prevent the motor from over-revving. Drive torque is independently controlled for each axle. This makes for very responsive all-wheel drive functionality that offers great potential in terms of traction and driving dynamics.

Lithium-ion battery with plug-in charging system 
The electric energy for the electric motors is stored by a liquid-cooled lithium-ion battery comprising 312 individual cells with an energy content of about seven kilowatt hours. The battery of the 918 Spyder has a performance-oriented design in terms of both power charging and output, so that it can fulfil the performance requirements of the electric motor. The power capacity and the operating life of the lithium-ion traction battery depend on several factors, including thermal conditions. That is why the battery of the 918 Spyder is liquid-cooled by a dedicated cooling circuit. The global warranty period for the traction battery is seven years.

To supply it with energy, Porsche developed a new system with a plug-in vehicle charge port and improved recuperation potential. This vehicle charge port in the B-column on the front passenger side lets users connect the storage battery to a mains supply at home and charge it. The charge port is standardised for the country of purchase. The on-board charger is located close to the traction battery. It converts the alternating current of the mains supply into direct current with a maximum charge output of 3.6 kW. Using the supplied Porsche Universal Charger (AC), the traction battery can be charged within four hours from a ten ampere rated, fused power socket on the German 230 Volt mains supply, for example. Furthermore, the Porsche Universal Charger (AC) can be installed at home in the garage using the Charging Dock. It enables rapid and convenient charging within approximately two hours, irrespective of regional conditions. The Porsche Speed Charging Station (DC) is available as an optional extra. It can fully charge the high-voltage battery of the 918 Spyder in just 25 minutes.

Pioneering control concept: clear organization of the cockpit
The driver is the focus of all technology in the future Porsche super sports car. A cockpit was created for the driver that is typical of the brand and pioneering in its clarity. It is partitioned into two basic areas. First, there are the controls that are important for driving, which are grouped around the multifunction steering wheel, combined with driver information displayed on three large round instruments. Second, there is the infotainment block that is housed in the lifted centre console, which was introduced in the Carrera GT. Control functions, e.g. for the automatic climate control system, wing adjustment, lighting and Porsche Communication Management (PCM), including a Burmester high-end sound system, can be intuitively operated by multitouch with a new type of black panel technology.

For even higher performance: the Weissach package
For very performance-oriented customers of the 918 Spyder, Porsche offers the “Weissach” package. These modified super sports cars can be recognised at first glance by special colours and designs that are based on legendary Porsche race cars. The roof, rear wings, rear-view mirrors and frames of the windscreen are made of visible carbon. Parts of the interior are upholstered with Alcantara instead of leather, and visible carbon replaces much of the aluminium. Sound insulation has been reduced. The emphasis on performance is not just visual: very lightweight magnesium wheels reduce unsprung masses; gross weight was reduced by about 35 kg. The benefits are experienced in further improved dynamic performance. Other references from motorsport are six-point seatbelts for driver and front passenger, optional film-coating instead of body paint, as well as additional aerodynamic body parts in visible carbon.

Porsche redefined: a new super sports car for a new decade
The 918 Spyder continues a long tradition of super sports cars at Porsche; as technology platforms, as the driving force behind both car emotion and car evolution and as the ultimate sports cars of their decades: the Carrera GTS, the first Porsche Turbo, the 959, the 911 GT1, the Carrera GT. More than any of its predecessors, the 918 Spyder is providing key impetus for developing technologies for future vehicle concepts. It offers a complete package of components that reflect Porsche DNA – more concentrated than ever before.

SOURCE: Porsche AG Media Database

Product and Technology Communication
Product Communication

 

Tags: , , , , , , , ,

VIDEO: PORSCHE 918 SPYDER WORKSHOP – Looking forward to this in 2013-2014 Santa Claus!

xlarge_porsche_918_spyder_logo

shhhhhhhhh….Ho! Ho! Ho! don’t tell Mrs Claus, I’m thinking about trading in the sleigh for one of these for 2013! PORSCHE 918 SPYDER @ Barber Motorsports Park

Porsche 918 Spyder   YouTube.png2_Snapseed

Santa Claus has visited 918 Spyder Research and Development Centre in Weissach (Baden-Württemberg) making decisions for NEXT year’s RIDE!

Just an ordinary picture to tickle our cheekbones……

532037_408092275934445_1555413530_n (4)

Note..auto journalist Georg Kacher in the light blue
Amazing image of the assembly workshop of Porsche 918 Spyder prototypes. It shows nine.

For those who follow 918 Spyder, each news is very good. An image of the assembly workshop prototype 918 Spyder . Obviously, they are not all there, but still counted nine 918 prototypes. Some are equipped with supplied “Martini“, others recover 917 sets of prototypes involved in the 24 Hours of Le Mans in the past.

The place where all the 918 prototypes are…..

Vorhang auf  der Porsche 918 Spyder   DE   YouTube.png6_Snapseed

Power up: the Porsche 918 Spyder

The future is an exciting place, and here’s one of the people bringing it closer. Meet Dr Frank Walliser, who takes us behind the development of one of Porsche’s most thrilling leaps in innovation, the Porsche 918 Spyder.

Vorhang auf  der Porsche 918 Spyder   DE   YouTube.png4_Snapseed Vorhang auf  der Porsche 918 Spyder   DE   YouTube.png5_Snapseed

This slideshow requires JavaScript.

Vorhang auf  der Porsche 918 Spyder   DE   YouTube.png20_Snapseed

The  final series of the 918 Spyder will be presented at the Frankfurt Motor Show in 2013 when the first deliveries are scheduled for the end of next year.

 

Tags: , , , , , , , , , ,

Porsche 918 Spyder Prototype Successful Testing / lap time 7 mins 14 secs on the “Nürburgring-Nordschleife”

Press Release 19/09/2012

Porsche 918 Spyder-Prototyp auf der Nürburgring-Nordschleife

Stuttgart. On September 18th, in test drives on the “Nürburgring-Nordschleife”, a Porsche 918 Spyder prototype turned in a remarkable best time of just 07:14 minutes for the 20.6 km long circuit.

Porsche 918 Spyder-Prototyp auf der Nürburgring-Nordschleife

One year before its production launch, the plug-in hybrid super sports car from Porsche AG is already proving its superlative dynamic performance potential far surpassing all expectations placed in it. Dr. Frank Walliser, overall project leader for the 918 Spyder:

“By turning in a fabulous time of 07:14 minutes, the 918 Spyder prototype has already fully confirmed the viability of its future concept after just a few months on the road.”

Dr. Frank Walliser, Gesamtprojektleiter 918 Spyder

The lap time of the Porsche 918 Spyder prototype is one of the best ever clocked for street-legal vehicles with standard production tyres.

Porsche 918 Spyder-Prototyp auf der Nürburgring-Nordschleife

The course was only available to the development team from Weissach for one lap, and it had to be started from a standstill.

Porsche 918 Spyder-Prototyp auf der Nürburgring-Nordschleife

The plug-in hybrid super sports car with over 795 hp was equipped with production tyres from development partner Michelin as well as the optional “Weissach” package, which integrates modifications that boost driving performance.

Porsche 918 Spyder-Prototyp auf der Nürburgring-Nordschleife

SOURCE: Porsche AG Media Database

Product and Technology Communication
Product Communication

 

Tags: , , , , , , , , , ,

Porsche Press Release – 918 Spyder prototype in attractive Martini Racing design

Prototype Porsche 918 Spyder in Martini Racing design

New edition of a successful partnership

918 Spyder prototype in attractive Martini Racing design

July 31st, 2012 Press Release

Stuttgart. Driving trials of the Porsche 918 Spyder are entering the next phase. A permanent fixture of the test programme for the 918 Spyder – and in the tuning process for all Porsche vehicles – is the 20.8 km long challenging Nürburgring-Nordschleife race circuit. After all, a lap time of less than seven minutes and 22 seconds is one of the development goals of the innovative super sports car with a plug-in hybrid drive.

Prototype Porsche 918 Spyder in Martini Racing design

The 918 Spyder combines a high-performance internal combustion engine with electric drives at the rear and front axles to achieve extraordinary driving performance and excellent efficiency. The system power of all three drives together is 770 hp. The car’s NEDC fuel consumption is forecast to be only around three litres per 100 km, which is equivalent to CO2 emissions of about 70 g/km.

Prototype Porsche 918 Spyder in Martini Racing design

The monocoque, consisting of carbon fibre reinforced polymer (CFRP), reduces the car’s weight and delivers remarkable rigidity and precision. Other highlights are the car’s fully variable aerodynamics, adaptive rear axle steering and “top pipes” exhaust system which routes the pipes upwards. All of this makes the Porsche 918 Spyder a super sports car for the future, even though the styling of the prototypes is reminiscent of historical models.

Prototype Porsche 918 Spyder in Martini Racing design

The latest test vehicle is now turning laps in the legendary Martini® Racing look of many historic Porsche race cars, particularly from the 1970s. More than nearly any other race car design, the Martini® Racing look quickly attained cult status in those times and is still in vogue today. Martini® was already the official partner of the Porsche factory team between 1973 and 1978.

Back then, the attractively designed “Martini® Porsche” race cars with their numerous victories were a centre of conversation. These victories included finishing first overall at Targa-Florio in 1973, winning the Sports Car World Championship in 1976 and overall victories at the 24 hours of Le Mans in 1976 and 1977.

Porsche Typ 917 Kurzheck (“Short Tail”) Coupé (1971)

As early as 1971, a Porsche 917 finished first in the legendary endurance race in Le Mans with the support of Martini®. Whether a Porsche 908, 917, 935 or 936 or one of various 911 RS or RSR models, common to all of these race cars was the memorable Martini® Racing design implemented in a wide variety of forms.

Now, a new edition of this successful partnership is making the Martini® Racing design exclusively available to the innovative 918 Spyder. Porsche AG and the Martini® brand, represented by Bacardi & Company Limited of Switzerland, have once again signed a partnership agreement to make this possible.

Specifications of the Porsche 918 Spyder*

Body: Two-seater Spyder; carbon fibre reinforced plastics
(CFRP) monocoque interlocked with CFRP unit carrier;
two-piece Targa roof; fixed roll-over protection system.

Drivetrain: Parallel full hybrid; 4.6-litre V8 mid-engine with drysump
lubrication; hybrid module with electric motor and
decoupler; electric motor with decoupler and gear unit
on front axle; electrical system recuperation; four
cooling circuits for motors, transmission and battery;
thermal management.

Engine Power: > 570 hp (V8 engine)
~ 90 kW (hybrid module on rear axle)
~ 80 kW (electric motor on front axle)
> 770 hp (combined)

Suspension: Double-wishbone front axle; electro-mechanical power
steering; multi-link rear axle with adaptive electromechanical
system for individual rear wheel steering;
optional electro-pneumatic lift system on front axle.

Brake system: High-performance hybrid brake system with adaptive
recuperation; ceramic brake discs (PCCB).

Energy supply: Lithium-ion battery with 6.8 kWh capacity (BOL
nominal), 202 kW maximum power and mainscompatible
plug-in charger.

Performance: Top speed > 325 km/h
purely electric > 150 km/h
Acceleration: 0 – 100 km/h < 3.0 s
Consumption
(NEDC): Total ~ 3.0 l/100 km
CO2 emissions: Total ~ 70 g/km
Range: Purely electric > 25 km
* Provisional specifications

SOURCE: Porsche AG Media Database

Communication Porsche AG
Technology Communication

 

Tags: , , , , , , , , , ,

PORSCHE 918 SPYDER PROTOTYP IS ON THE ROAD

Development of the Porsche super sports car enters next phase

918 Spyder prototypes commence trials

Stuttgart. The Porsche 918 Spyder is on the road: Dr. Ing. h.c. F. Porsche AG, Stuttgart, has taken the driving trials of the super sports car of the future a step further with completion of the initial prototypes. The 918 Spyder will go into production at the end of September 2013 as planned, with the first customers receiving their vehicles before 2013 is out.

“What we are doing with the 918 Spyder is redefining driving fun, efficiency and performance,” said Wolfgang Hatz, Member of the Executive Board Research and Development of Porsche AG.

The prototypes, their camouflage harking back to historical Porsche 917 racing cars, signal the final touches to the 918 Spyder. The focus is on the interplay between the highly sophisticated individual drive components. The combination of combustion engine and two independent electric motors – one on the front axle and one in the drive line, acting on the rear wheels – poses completely new demands on the development of the operating strategies.

“They are therefore a critical component in this vehicle into which we have put all of our expertise and capacity for innovation,” said Wolfgang Hatz.

These operating strategies and the development of the software to go with them are one of Porsche’s core competences. Both of them have a major influence on the extreme driving fun to be had with the 918 Spyder and they make possible a unique combination of minimal fuel consumption and maximum performance. The initial results of the driving trials are in line with the high expectations placed on the 918 Spyder.

This slideshow requires JavaScript.


The super sports car is designed as a plug-in hybrid vehicle combining a high-performance combustion engine with cutting-edge electric motors for extraordinary performance: on the one hand, the dynamics of a racing machine boasting more than 770 hp, on the other hand, fuel consumption in the region of three litres per 100 kilometres. Moreover, Porsche is breaking yet more new ground with the technology demonstrator with spectacular solutions such as the full carbon fibre reinforced plastic (CFRP) monocoque with unit carrier, fully adaptive aerodynamics, adaptive rear-axle steering and the upward-venting “top pipes” exhaust system. In the process, the 918 Spyder is offering a glimpse of what Porsche Intelligent Performance may be capable of in future.

SOURCE: Porsche AG Media database
Product and Technology Communication
Product Communication

 
 

Tags: , , , , , , , ,

Porsche 918 Spyder Prototype Goes For a Test Drive

The Porsche 918 Spyder is coming.

Production of the most anticipated Porsche starts at the company’s Stuttgart plant on Sept. 18, 2013 with only 918 units to be produced. Porsche will start selling the car for a starting price tag of $845,000 and the first customer cars will begin arriving in the United States near the end of 2013.

That’s quite a bit time. But before all that happens, Porsche decided to give a select few a first ride in a very early prototype for the 918 Spyder.

A ride in a 2014 Porsche 918 Spyder prototype, the only one in the world at a remote test track, a gaggle of Porsche engineers are at work, surrounded by all sorts of data-logging equipment. And there, in the middle of it all, is the 918.

The first ever Porsche 918 Spyder to run under its own means is nothing more than a rolling chassis pieced together so engineers can test its gasoline-electric hybrid drivetrain.

Partly covered in modified Porsche 911 body panels and flaunting outrageous exhaust pipes that sprout up from the engine bay at the rear (a feature we’re assured will be retained for production), it is a long way from the 918 Spyder concept that basked in the spotlight at the 2010 Geneva Auto Show.

“The production version will be very similar to the concept car in overall appearance,” Frank Walliser, chief engineer for the 918 program.

“There will be some changes, like these tailpipes. This is really just a systems mule that we’re using to sort the various gasoline-electric hybrid components and its electronics package before we begin construction of road-going prototypes back in Weissach (Porsche’s research and development center in Germany).”

As we know the Porsche 918 Spyder by now. Mere months after its unveiling, Porsche confirmed it would put the supercar into production as a successor to the celebrated Carrera GT, starting on September 18, 2013.

Just 918 examples are planned, each running down a dedicated line that is being established in a former paint shop at the car maker’s Zuffenhausen headquarters in Germany. It is the same factory that builds the latest Boxster and 911 — a holy grail to true Porsche fans, no less.

Waking Up the Engine
The Porsche engineers make some adjustments to the prototype’s electronics, which are housed in a makeshift aluminum box strapped to an area that will eventually be occupied by the production car’s rear spoiler. Walliser’s boss, Wolfgang Hatz, Porsche’s chief of research and development, slides down into the driver seat and twists a key in the left-hand-mounted ignition. Odd whirring sounds rise up from underneath before the gasoline engine catches and fills the garage with a deep pulsating blare of exhaust from those prominent tailpipes.

The centerpiece of the new Porsche is its mid-rear-mounted V8 gasoline engine, seated on traditional rubber mounts (rather than the hydraulic mounts used on the 911) within a carbon-fiber cradle that is attached to the back of the main tub by six prominent mounting points.

Similar to the 90-degree V8 used in the Porsche RS Spyder successfully campaigned in the American Le Mans series between 2005 and 2008, the engine has gained 1.2 liters of displacement, going from 3.4 liters in race trim up to 4.6 liters in this application.

Walliser describes the engine as “entirely new,” noting that it features an all-new crankcase, cylinder head design and low-reciprocating-mass internals, plus that radical exhaust system that sees two pipes exit just behind the integral carbon-fiber roll hoops. The point of this arrangement is to keep hot exhaust gases well away from the car’s heat-sensitive battery pack mounted down low directly behind the tub.

Let’s Talk About the Numbers
The revamped V8 has been tuned to rev to a dizzying 9,200 rpm (though in its current state of tune, it has a lower redline), and owing to its racing gene, Walliser promises it will deliver the same razor-sharp throttle response as the Carrera GT’s 5.7-liter V10. Porsche engineers tell us the V8 makes about 562 horsepower.

But the 2014 Porsche 918 Spyder is a hybrid, remember, so it also has a pair of synchronous electric motors — one mounted up front acting exclusively on the front wheels with 107 hp, and a second, 121-hp motor attached to the rear of the gasoline engine providing drive to the rear wheels. We’re told total system power will be in the neighborhood of 759 hp, with 568 pound-feet of torque.

Barely containing his delight at finally getting to show off the 918 Spyder to someone other than an engineer, Hatz gingerly guides the prototype out of the garage. After prodding the throttle a couple times to release some heat into the engine and its peripheries, he speeds off into the distance. We scramble back into the Multivan and catch up with the prototype at the end of an immense test track. The engineering team has spent the 10 days here at the track methodically running through the first systems test of the new car.

This car will offer five driving modes. There’s “e power” for all-electric operation, a “hybrid” mode that allows either electric or gasoline operation, followed by “sport hybrid,” which is the first of three performance-oriented gasoline-electric modes. Beyond that, “race hybrid” calls up even further levels of performance, while “hot lap” unleashes all the battery’s remaining power for short periods of what Walliser describes as overboost.

How Quick Is It?
Nothing is official just yet, but Porsche is aiming for a curb weight around 1,700 kg (3,747 pounds), with 0-62-mph acceleration in less than 3 seconds.

Officials also hint at a 0-124-mph time of less than 9 seconds and zero to 186 mph in less than 27 seconds — quicker than the Carrera GT. Top speed, achieved with the help of a series of active aerodynamic functions including diffuser elements behind the front wheels and a multistage rear wing that extends to a maximum height of 4.7 inches, is pegged at 202 mph

The Chassis
The 2014 Porsche 918 Spyder prototype rides on a unique chassis made almost entirely from cast-aluminum components. The suspension is a combination of double wishbones at the front and a multilink setup in back, but unlike the system on the Carrera GT, which used a racecarlike pushrod system attached to the unit-body, the 918 has conventional springs and dampers sited outboard near the center-lock-style wheels, which measure 20 inches up front and 21 inches in the rear and are wrapped in 265/35R20 and 325/35R21 Michelin Pilot Sport Cup rubber.

Computer simulations suggest the production car will be capable of generating up to a 1.4g on the skid pad (though that’s a maximum figure, rather than the average lateral acceleration we customarily report). He also drops a Nurburgring claim: Porsche is targeting 7 minutes, 22 seconds on the Nordschleife — still well short of the Dodge Viper’s 7:12, but moving nonetheless.

Even in early prototype form, the 2014 Porsche 918 Spyder is hugely impressive. There’s still a long way to go — another 18 months of intensive development, no less. But as our ride comes to an end, we’re struck by just how far Porsche’s engineering team has come during just 10 days of development work on the rolling chassis.

In the next phase, Porsche will build 23 road-going prototypes. Stay tuned.                          Read the original:
Porsche gives some a first ride in the 918 Spyder prototype …

What have we seen so far?

 evo’s Editorial Director and Founder Harry Metcalfe has a look at the future of the supercar.

  • From Top GearThe performance headlines are this. Acceleration from 0-62mph in ‘less than three’ seconds. Zero to 125mph in a time that almost matches a Bugatti Veyron. And a Nürburgring lap time (so far verified only on Porsche’s supernaturally accurate simulators), of 7.22. That’s 10 seconds faster than the old Carrera GT, and 10 seconds.

  • From AutoWeekAs if that’s not enough, Porsche also says its new supercar will boast a combined city/highway fuel-consumption figure of more than 78.4 mpg (U.S.) on the current European cycle. By comparison, the Carrera GT returned just 13.2 mpg (U.S.) under the same test procedure.

  • From WiredPorsche pulled a variant of the 4.6-liter V8 originally fitted to the three-time ALMS LMP2 Championship-winning RS Spyder. That engine put out a comparatively paltry 503 horsepower, but fitted to the 918, output is up to 570 hp. That figure is before you account for the 918′s two electric motors, and it’s also where the similarities to past supercars ends.

 

Tags: , , , , , , , , , , , , , , , ,

 
%d bloggers like this: